If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5t^2+40t-20=0
a = -5; b = 40; c = -20;
Δ = b2-4ac
Δ = 402-4·(-5)·(-20)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-20\sqrt{3}}{2*-5}=\frac{-40-20\sqrt{3}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+20\sqrt{3}}{2*-5}=\frac{-40+20\sqrt{3}}{-10} $
| A+4x=190 | | 2x²-81=0 | | 3(5x+2)=x+1 | | p-11/2=16 | | (2y+40)=180 | | 0.2x+3=3.5 | | x+4/x=3 | | (x-1)+2=3 | | X/3=2y | | (5x-7)+1=2 | | 5x+5/2=3x/2-14 | | y(20/5+6)+20/5=0 | | x(20/5+6)+20/5=0 | | 3x-10÷11=23 | | 4(x-3)+2x=15 | | 5x-2=18-3x | | 1)5x-2=18-3x | | 3(5x-7)-x=10 | | 3(x-5)=5(x+10) | | 2x^2-3(4x^2-12x+9)=0 | | 2x^2-3(2x-3)^2=0 | | -10x^2+36x-27=0 | | 3/n+4=6 | | 15x-12x-15=12 | | 23x-1=9*2x+1 | | 23x-1/2x+1=9 | | 6*21x=3x+2 | | 9-3x-15=4x-6-15x | | 6(21)=3x+2 | | 6(4x-3)=18x | | 5x-x+8=68 | | 2,01x+660=2,10x+480 |